Помол 2

2.7. Структура процесса газодинамического диспергирования материалов

Газодинамический дезинтегратор является тепловой машиной с определенным термодинамическим циклом. asics france Для реализации указанного термодинамического цикла технологическая схема газодинамического диспергирования включает в себя: — систему подготовки рабочего тела, состоящую из источника сжатого воздуха и устройства подвода тепла; — (ускоряющую) систему (газодинамического) ускорения рабочего тела; — смесительные устройства с системой регулируемой подачи измельчаемого материала; — классификатора; — пылеосадительных устройств с бункерами-разгрузителями; спосос — пневмотранспортной системы. Эффективность газодинамического дезинтегратора определяется особенностью и взаимосвязью процессов, протекающих в каждом его структурном элементе и, в целом, может характеризоваться приведенной интенсивностью процесса измельчения Gп, определяемой количеством полученного измельченного продукта при затрате 1 кВтч энергии (?). Чем выше Gп, тем лучше организован процесс измельчения: Gп = m / G∑» G∑»- израсходованная энергия; m–масса полученного материала. Для оценки работоспособности ГДД, по аналогии с принципом оценки эффективности работы любой газодинамической системы могут быть использованы такие показатели, как … Тяга реактивного двигателя определяется уравнением: R* = Rдин*+ Rст* = mwс + Fc(Pc – Pн), где m – секундный расход газа, кг/с; wс — скорость газового потока на срезе сопла; Fc — площадь выходного сечения сопла; Pc, Pн – давление рабочего тела, Rдин* = mwс соответственно на срезе сопла и окружающей среды; Rст* = Fc (Pc – Pн) – статическая составляющая тяги; Rдин* = mwс – динамическая составляющая тяги. Динамическая составляющая тяги Rдин*(импульс потока), зависящая от скорости истечения газа, является основной характеристикой помольного узла ГДД. Скорость истечения, в свою очередь, определяется параметрами газа перед истечением (температурой, давлением, составом газа – молекулярной (?) составляющей), а также зависит от типа ускорителя, конструкции сопла, смесительной и помольной камеры. Для получения требуемого положительного эффекта при заданных физико-химических свойствах измельчаемого материала, необходимо менять характер термического и газодинамического воздействия, обеспечиваемое, например, путем изменения конструктивного оформления и режимов работы определенного элемента ГДД. При этом в каждом отдельном случае будет наблюдаться преобладание определенных видов нестационарных процессов в обрабатываемом материале, обеспечивающих требуемые качества получаемого продукта. В качестве сравнительных показателей работы различных конструкций газодинамических дезинтеграторов могут быть использованы значения: удельного импульса, удельных затрат энергии и рабочего тела на измельчение, удельного веса, используемого оборудования, термического кпд … Удельный импульс определяется из отношения Rуд* = Rдин*/Qг = wс / g , где Qг – секундный расход газа, кг/с; g= 9,81 м/с2 – гравитационная постоянная. Удельный вес используемого оборудования gу: gу = Му / Rдин*, где Му – масса оборудования технологической схемы газодинамического диспергирования. ugg classic tall ….

2.8. Особенности процессов в элементах ГДД

В начале термодинамического цикла лежат процессы сжатия рабочего тела и его нагрев. Последующее преобразование внутренней энергии газа в работу совершения внутримельничных процессов осуществляется в соответствующих функциональных элементах – в соплах, смесительных камерах инжекторов, в помольной камере , классификаторе… (? ??) В зависимости от способа и степени нагрева рабочего тела, процесс ускорения рабочего тела может осуществляться газодинамическим, элекродинамическим …. способами . При газодинамическом способе ускорения работа расширения газа в сопле от величины давления перед истечением (в камере) — Рк до давления Рс — в сопле, аккумулируется как кинетическая энергия. В случае Рса > Ркр, (где Ра – атмосферное давление) давление на срезе сопла Рс зависит от величины отношения выходного сечения сопла fа к его критическому сечению fкр и давления перед истечением Рк. При fа / fкр = 1 Рс = Ркр = Рk (2 1+к) к / (к-1), ????? где Ркр – критическое давление; к – показатель адиабаты. Для случая идеального цикла (Рк = const) рабочее тело – газ подчиняется законам идеального газа. Уравнение первого закона термодинамики запишется: Uс — Uк + L + (wс2 – w2к) / 2 g , (2.9.) где Uс = сvТс + Uвс ; Uк = сvТк + Uвс; Uвс – внутренняя энергия газа в объеме соплового канала; сv — теплоемкость газа при постоянном объеме; wк – скорость газа перед истечением (wк =0); Тк, Тс – температура перед истечением и на срезе сопла; L = РсVc – Pk Vc = RTc – RTk — работа газа; R – газовая постоянная; Vc, Vк – объем газа соответственно в сопле и в камере. Формула (2.9.) преобразуется: сvТс — сvТк + RTc — RTk + wс2 /2 g =0. air max 1 Полезная работа: Lад = w2а / 2 g = Ik — Ic = cpк — Tc) = cp Тк (1 — Тс / Тк), Где Ik, Ic – энтальпия газа соответственно перед истечением и в сопле (? В его критическом сечении). Учитывая, что Ik = cp Тк = [k / (k-1)] RTk, а Тс / Тк = (Pc / Pk)(k – 1) / K, получим формулу удельной работы цикла: Lад = [k / (k-1)] RTk [1 – (Pc / Pk)(k – 1) / K] = [k / (k-1)] RTk [1- 1/(dca)] (k – 1) / K, где а = k / (k-1). Термический КПД ht =(Ik — Ic) / Ik = 1– (Tk / Тк) = 1-(Pc / Pk) = 1- 1/(dca), т.е. эффективность термодинамического цикла зависит от степени расширения газа в сопловом канале dc и численного значения показателя адиабаты, зависящего от химических свойств газа. Следовательно, основные показатели работы термогазогенератора (?) зависят от скорости истечения газа из сопла и массы истекающего газа, а показатели работы струйного аппарата – от Tk, Tс, R, зависящих от химического состава газа, а также от Рк и Pс, зависящих в свою очередь от параметров системы подачи компонентов в систему подготовки рабочего тела и геометрии сопла.

Глава 4 Харакеристика рабочего тела ГДД

4.1 Структура газовой струи.

Скоростная газовая струя, как рабочее тело газодинамического дезинтегратора, генерируется источником газового энергоносителя и формируется газодинмическим устройством – соплом, геометрия которого определяет строение тела струи, выходящей из сопла и её скорость. Сопло рассчитывается таким образом, чтобы обеспечивалась максимальная скорость истечения газа в рабочих условиях. Поскольку газовая струя в газодинамичеком дезинтенграторе является рабочим телом и определяет характер процессов её взаимодействия с измельчаемым материалом, её воздействие на материал должно являться основным объектом изучения и рассматриваться с точки зрения выявления и использования свойств, способствующих повышению эффективности обработки материала. Изучение свойств сверхзвуковой струи, вначале развития гаодинамики (конец XIX и начало XX веков), носило познавательный характер, а первые попытки практического её применения для измельчения материалов минерального происхождения не имели глубокого теоретического обоснования. В работах Кисельгофа , В.И.Акунова …рассмотрено движение отдельных частиц, … однако авторы указанных работ не уделяют должного внимания особенностям строения сверхзвуковой струи и влияния на эффективность разрушения материала. Картина течения в сверхзвуковой струе, вытекающей из осесимметричного сопла зависит от целого ряда факторов: — от степени нерасчетности струи, определяемой величиной отношения давления на срезе сопла Pc и на границе струи с окружающей средой Pн (n = Pc / Pн); — угла раствора сопла ψ; — значения параметров струи (Тс, Мс, Рс) на срезе сопла; — состояния наружной среды, в которую истекает струя (фазовое состояние среды, её давление, скорость перемещения). Режим работы ГДД может характеризоваться одним из трех видов истечения струи: — истечение в расчетном режиме n = 1 (Рс = Рн); — истечение с недорасширением n > 1 (Рс > Р н); — истечение с перерасширением n < 1 (Рс < Р н). Структура струи в соплах с постоянной геометрией может изменяться (изменяется) изменением давления газа перед истечением или изменением наружного давления. Независимо от условий истечения сверхзвуковая струя (рис. 1) разбивается на три основных участка [Гинзбург А.П. Аэрогазодинамика. ugg australia classic – М.: Высшая школа. 1968]; I – начальный газодинамический участок, где влияние вязкости и теплопроводности сказывается лишь в тонком пограничном слое. Структура потока определяется исходя из рассмотрения задач газовой динамики в идеальной жидкости. Картина существенно зависит от степени нерасчетности n и угла раствора сопла; II – переходный участок, на котором оказывает влияние турбулентность, разделяется на первый переходный участок (а), в котором сохраняется ядро постоянных скоростей (осевая скорость постоянна), и второй переходный участок (б), в котором ядра постоянных скоростей нет, а максимальная скорость лежит не на оси струи; III – основной участок, для которого справедливы соотношения свободных турбулентных струй. Возможные картины течения струи на начальных участках показаны на рис. 2 [c. 71 Боженов Е.П. Термогазодинамическая обработка строительных материалов. –М.: Стройиздат. 1985.] При выходе струи из сопла на его кромках образуются волны разрежения, достигающие линии ударного фронта, образующегося на противоположном срезе сопла, а не границы струи, как принято в [Ягупов А.В. Тепловое разрушение горных породи огневое бурение. – М.: Недра, 1972.]. Из-за возникновения волн разрежения и расширения потока давление в нем уменьшается. Картина течения при значении нерасчетности, равной или близкой к единице, характеризуется х-образным ударным фронтом (рис. 23, а) При n > 2 возникает Маховская конфигурация (рис. 23 б). У среза сопла имеется конусообразная зона VI, ограниченная волнами разрежения, сходящими с кромки сопла. Её параметры близки к параметрам на срезе сопла. У среза сопла возникает течение разрежения в виде центрированной волны. Эта зона IV ограничена первой волной разрежения и ударной волной. Давление на границе струи, выходящей из сопла равно Рн. Ударная волна заканчивается в точке С Маховского диска, пересекающего ось струи под прямым углом. С краев диска по течению сходит новая ударная волна, которая достигнув границы струи, вызывает появление центрированной волны разрежения, определяющей вторичное разрежение струи. Одновременно с контура диска Маха сходит стационарный разрыв, отделяющий газ, прошедший через диск Маха, от газа, прошедшего через две ударные волны. В зоне V наблюдается течение разрежения вследствие отражения волн разрежения от оси струи. nike roshe run 2017 Течение в зоне I носит сложный характер, траектория частиц (газа) имеет значительную кривизну, В зоне III за диском Маха течение дозвуковое. Векторы скорости в зонах II и III мало отличаются от осевого направления. Давление в них равно Рн. У выхода из сопла вблизи точки А наблюдается течение разрежения типа Прандтля-Майера. nike air max 1 Поток расширяется и давление уменьшается от Рс до Рн . Граница струи – это линия скольжения, при переход через которую параметры значения плотности и скорости скачкообразно. Параметры на границе определяются известными уравнениями [Гинзбург Аэрогазодинамика. nike air max 1 blanc – М.: Высшая школа. 1968] . Зная параметры на срезе сопла (Рс, wс, rс, Тс), определив параметры на границе струи (Рн, wн, rн,), в силу изоэнтропности потока находят параметры заторможенного потока (Рт, rт, Тт)) из условия постоянства теплосодержания и изоэнтропности. Рис 22 Структура сверхзвуковой струи Rm – граница максимальных продольных скоростей; R0 – граница зоны постоянных скоростей; W — векторы скоростей. Рис. 23. Строение начального участка струи при различных показателях степени нерасчетности сопла п = Р СН а) n ≈ 1; б) n>2; в) n<1; г) n «1; pс — давленне в струе на срезе сопла; Рн –давление наружной среды В силу изоэнтропичности потока можно написать условия постоянства теплосодержания [к/(к-1)] (P0 / r0) = ?w2с / 2 +[ к/(к-1)] (Pс / rс) и условие изоэнтропности Рн / rнк = Рс / rск = Рс /r0к, Где Рн, wн, rн — давление, скорость, плотность на границе струи; Рс, wс, rс – соответственно на срезе сопла в точке А; Р0, r0 – параметры заторможенного потока. Параметры потока на границе струи определяются из уравнений: Асн = [1 – (к-1)/2 M2н]к/к-1; rн /rс = {[1 +(к-1/2) M2с] / [1+ (к-1)/2 M2н] к/к-1]} ?eТн с = e(1 +(к-1/2) M2с / (1 +(к-1/2) M2с). vНачальный угол наклона струи vн находят по формуле Прандтля – Майера для случая обтекания выпуклого угла плоским потоком vн = ψ+w(Мн) — w(Мс), w(М) = e[( к + 1) /( k-1)] аrctge [(k-1)/(k+1)](M2-1)- аrctge(М2-1) Значение М по оси струи определяют по формуле h=F(М)-F(М1), (4.6) F(М) =(3-k)/(k – 1)e(М2 -1) – (2-k)/(k-1)e(к+1)/к-1) аrctgx x e [(k-1)(k+1) e(М2 -1). М2=1+(k+1)/(k-1)tg2{e(к-1)/(к+1)[p/2 +w(Mc)-uc]}. По данным Ванга и Патерсона, при недорасширенин скорость газа растет по оси струи до определенных пределов, Так, для к=1,15, МС =3, 1/h = 2,83 в струе есть начальное ядро с M=3, затем на расстоянии от среза сопла h = 2,5гс , где гс — радиус среза сопла, скорость увеличивается до М = 4h, h= 4,8rс; М=4,75 при h= 7,7гс . Расстояние от среза сопла до диска Маха при n>2 вычисляют по формуле: h c =0,8{3,1Мc1,5 [(hMc2 – 1)½— (M2– 1)½]-2e (Mc2 –1)(n /2)t где t=0,451—0,016 Мс Длина первой бочки равна 1,25hc [85 – патент США, №2781754, 1957]. Свободная турбулентная струя рассчитывается по методике Г. Н. Абрамовича. Картина течения при незначительном перерасширении n<1 (рис, 23, в) характеризуется восстановлением давления в струе ударным конусообразным фронтом, сходящим с кромок сопла. При п « 1(большом нерерасширении) (рис. 23, г) образуется Маховский диск, с контура которого сходят стационарный разрыв и расходящаяся конусообразная волна, и начинается течение с недорасширением. Таким образом, строение струи зависит от условий истечения. Газодинамическая структура сверхзвуковой струи представляется достаточно сложной, струя имеет ряд зон с дозвуковыми и сверхзвуковыми течениями. Несомненно, что неоднородность струи сказывается на характере обработки — разрушения преграды. Так, гранит в зависимости от зоны струи, в которую он попадает, может плавиться, разрушаться мелким шелушением, сбоем, крупным сбоем или не разрушаться. При большой нерасчетности сопла (п= 1,5 … 10) в зоне диска Маха наблюдается область нестационарных газодинамическнх возмущений, начало которых от среза сопла характеризуется величиной hн = Ма eкh*dc (0,88—0,12 Мс). (4.101 где dc — диаметр среза сопла; к, h — показатели изоэнтропы и нерасчетности струи. Заканчивается область нестационарных газодинамических возмущений на расстоянии hк от среза сопла: hк = а kh dc (2,05 -0,003). nike pas cher Нестационарность, периодичность воздействия увеличивают эффект разрушения. Структура струн характеризуется условиями ее истечении из сопла: п, Мс ψ; п и ψ зависят в основном от конструктивных патраметров, а Мс — от вида используемого энергоносителя и геометрии сопла.

4.2. ХАРАКТЕР ВЗАИМОДЕЙСТВИЯ СВЕРХЗВУКОВОЙ ГАЗОВОЙ СТРУИ С ЧАСТИЦАМИ

При взаимодействии струи с инжектируемыми частицами, картина течения становится зависимой от нерасчетности струи и особенностей строения той зоны струи, в которую они попадают. Распределение давления и температуры в пятне воздействия может характеризоваться одногорбой и двугорбой кривой. chaussures tn 2017 В первом случае максимум лежит в центре пятна, во втором случае есть два максимума. Приложение нагрузок неравномерно по зоне пятна взаимодействия. В случае возникает тройная конфигурация ударных Выше линии тройной конфигурации скорость набегающего потока сверхзвуковая, ниже дозвуковая. По данным И. П, Гинзбурга, поток между ударной волной и имеет концентрические зоны квазипериодических пульсаций. Несомненно, что это усиливает неравномерность теплопередачи от струи к преграде и может способствовать процессам догорзния частиц топлива в призабойной зоне. В [32, 92] показано, что наличие на поверхности преграды постоянно меняющих свою конфигурацию выбоин, бугров, шероховатостей, микротрещин является следствием возникновения местных волн, аналогичных волнам, возникающим при обтекании, тупого угла и т, д. Давление и температура в линиях разрыва меняется скачкообразно. Действительно, в каждой фиксированной точке поверхности по мере разрушения возникают местные, постоянно меняющие конфигурацию преграды различной формы, на которых из-за изменения их обтекания давление изменяется от полного под скачком уплотнения до статического и менее при случая обтекания выпуклого угла. Из-за постоянно изменяющихся во времени местных форм разрушаемой поверхности картина течения газового потока в зоне взаимодействия постоянно меняется, вследствие чего постоянно изменяется характер воздействия струи на преграду. Наличие нестационарного высокоамплитудного воздействия параметров струи на преграду увеличивает эффект разрушения.

Рассмотрим картину взаимодействия струи с различной нерасчетностью при разных расстояниях между срезом сопла и преградой, полученным А. П. Гинзбургом. На рис.24 показан характер взаимодействия струи с преградой в зоне пересечения ударных волн (см. сечение К—К на рис. 23, а) при нерасчетности сопла n≈1 и при нахождении преграды в сечении l- l перед диском Маха при нерасчотности п>2 Рис. 25 иллюстрирует характер возможного взаимодействия струи с преградой, помещенной в зону точки С с небольшим смещением (см. рис. 23, а) при нерасчетности n≈1. На рис. 26 изображено взаимодействие струи с преградой в сечении Маха при нерасчетности n>2 (см. сечение С—С на рис. 23, б), а на рис. 27 — за диском Маха (см. сечение ///—/// па рис.

Добавить комментарий